Lecture 20

Elementary Counting Problems

Permutations

Let us assume that n patients arrived at a dentist's office at the same time. The dentist asks them to form an order and then he will treat them one by one.

How many different orders are possible? $n \times(n-1) \times(n-2) \times \ldots \times 1=n$!

Definition: The arrangement of different objects into a linear order using each object exactly once is called a permutation of these objects.

Theorem: The number of all permutations of an n element set is n !.

Permutations

Example: A gardener has 5 red flowers, 3 yellow flowers and 2 blue flowers to plant in a row. In how many different ways can she do that?

Solution: The issue is that the objects are not all distinct.
Assume the gardener plants all the flowers and then labels red flower from 1 to 5 , yellow flowers from 1 to 3 , blue flowers from 1 to 2 .

With labels the row of flowers can look in 10 ! different ways.
Consider the following arrangement of unlabelled flowers:

Possible number of labels.

Permutations

The red, yellow, and blue flowers can be labeled in 5 !, 3 !, and 2 ! ways, respectively.
Let x be the number of ways gardener can plant flowers without labels.

Then, $x \times 5!\times 3!\times 2!=10!\Longrightarrow x=\frac{10!}{5!.3!.2!}$

Theorem: Let $n, k, a_{1}, a_{2}, \ldots, a_{k}$ be non-negative integers satisfying $a_{1}+a_{2}+\ldots+a_{k}=n$. Consider a multiset of n objects, in which a_{i} objects are of type i, for all $i \in[k]$. Then the number of ways to linearly order these objects is,

$$
\frac{n!}{a_{1}!. a_{2}!\ldots a_{k}!}
$$

Sequences

Theorem: The number of k-length sequence one can form over an n-element set is n^{k}.
Proof: We can choose the 1 st element of the sequence in n different ways.
Similarly, the 2 nd , 3 rd, and other elements can also be chosen in n different ways.
Therefore, the total number of choices $=\underbrace{n \times n \times \ldots \times n}_{k}=n^{k}$

Theorem: Let n and k be positive integers such that $n \geq k$. Then the number of k-length sequence one can form over an n-element set in which no element is used more than once is,

$$
n .(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

Proof: Easy. Hence, skipped.

Choosing Subsets of a Set

Definition: The number of k-element subsets of $[n]=\{1,2, \ldots, n\}$ is denoted by $\binom{n}{k}$ and read as " n choose k ".

Theorem: For all non-negative integers $k \leq n$,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Proof: Selecting a k-length sequence from the n element set can be done in $\frac{n!}{(n-k)!}$ ways.
Every k-element subset occurs k ! times among these sequences.
\therefore the number of k-element subsets is $\frac{1}{k!}$ times the number of k-length sequences.

Choosing Subsets of a Set

Theorem: For all non-negative integers $k \leq n$,

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Proof: We will prove it the longer way...
Let $A=$ set of all k element subsets of $[n]$, and $B=$ set of all $n-k$ element subsets.
Define a bijection $f: A \rightarrow B$.

$$
f(x)=\text { complement of } x \text { in }[n] .
$$

Therefore, $|A|=|B|$. Hence, $\binom{n}{k}=\binom{n}{n-k}$.

Choosing Multisubsets of a Set

Definition: A subset of a set that is a multiset is called multisubset.
For instance, $\{1,2,3\},\{2,2,2\},\{1,1,1\}$, etc., are 3 -element multisubsets of the set [10].
Theorem: The number of k-element multisubsets of $[n]$ is $\binom{n+k-1}{k}$.
Proof: Let,

$$
\begin{aligned}
& A=\text { set of } k \text {-element multisubsets of }[n] \\
& B=\text { set of } k \text {-element subsets of }[n+k-1]
\end{aligned}
$$

Define a bijection $f: A \rightarrow B$.

$$
f\left(\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}\right)=\left\{x_{1}, x_{2}+1, x_{3}+2, \ldots, x_{k}+(k-1)\right\}, \text { where } x_{i} \leq x_{i+1}
$$

Choosing Multisubsets of a Set

Proving range of f is B : Let $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\} \in A$, such that $x_{1} \leq x_{2} \leq \ldots \leq x_{k}$.
Consider $f\left(\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}\right)=\left\{x_{1}, x_{2}+1, x_{3}+2, \ldots, x_{k}+(k-1)\right\}$
Then,

- $x_{i} \leq x_{i+1} \Longrightarrow x_{i}+(i-1)<x_{i+1}+i$
- $1 \leq x_{1}$
- $x_{k} \leq n+k-1$

Proving f is one-to-one: DIY.
Proving f is onto: Let $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\} \in B$ such that $y_{1}<y_{2}<\ldots<y_{k}$. Then, $\left\{y_{1}, y_{2}-1, y_{3}-2, \ldots, y_{k}-(k-1)\right\} \in A$ can be proven the similar way.

Of course, $f\left(\left\{y_{1}, y_{2}-1, y_{3}-2, \ldots, y_{k}-(k-1)\right\}\right)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$.

